Research Highlight


Electron microscopy images of (A) untreated RAW 264.7 cells and the subcellular localization of (B) TiO2 and (C) carboxylated and (D) amino (NH2) polystyrene (PS) nanospheres. Labels: M=mitochondria, P=particles. Source: http://www1.cnsi.ucla.edu/arr/paper?paper_id=192734

Uptake and localization of nanoparticles in prostate and lung cancer cells as a function of time and nanoparticle type

Nanoparticles of varying materials (gold, titanium dioxide, graphene oxide etc.) have been shown to have radio-/photo-sensitizing properties. These sensitizers increase sensitivity of cancer cells to damage during radiation therapy. By implanting a nanoparticle-loaded radiation therapy biomaterial (RTB), such as a fiducial, into the tumor, nanoparticles can be released in situ. This method can lead to local damage enhancement while sparing healthy tissue. Use of a RTB for delivery of nanoparticles also allows for sustained release of nanoparticles directly into the tumor environment minimizing systemic toxicities. Cellular uptake of nanoparticles is primarily facilitated via receptor-mediated endocytosis.. Gold, titanium dioxide, and graphene oxide nanoparticles in conjunction with radiotherapy have been shown to disrupt the cellular function of tumors via the induction of reactive oxygen species (ROS). This leads to oxidative stress and the release of cytochrome c which causes apoptosis. The nuclear pore size exclusion for the diffusion of molecules is around 9 nm. Thus, nanoparticles larger than 9 nm have been shown to accumulate primarily in the cytosol while smaller molecules are able to enter the nuclear space. It is important to understand the localization of various nanoparticles as a function of time in order to determine the most effective timing of exposing the tumor to radiation. This can be accomplished by treating cancer cells with nanoparticles and using electron microscopy to determine localization over the course of time.

 

 


Trainee Research

CaNCURE provides trainees with a 6-month hands-on research experience and one-on-one mentoring by leading researchers in cancer nanomedicine.   Projects performed by current and past participants include:

PDT and PIT with Chemotherapy for Treatment of 3D Ovarian Cancer Nodules Under Flow and Static Conditions

Implementation of novel MR-based attenuation correction in PET/MR pelvic scans

Investigation of a miRNA associated with cancer metastasis. Proj 2-Development of a novel nanoparticle for MPI analysis of thromboses

Development of PSMA-targeting nanoparticles for positron emitting tomography imaging in prostate cancer using animal models

Delivery of Titanium Dioxide Nanoparticles via Biodegradable PLGA Dissolving Microneedles for Sustainable Release

Characterization of Nano-Dinaciclib in Combination with Nano-Talazoparib for the Treatment of Breast Cancer

Investigating the use of Feraheme to monitor the immune response by PET in general inflammation and specific immune cell populations

Codelivery of tumor suppressor mRNA and anti-cancer drug in cancer treatment

Longitudinal assessment of tumor heterogeneity during immunotherapy for metastatic melanoma

Online monitoring and image-guided treatment of chemoresistant micrometastases

Mechanistic and modeling studies of lipid nanoemulsions impact on oral lapatinib absorption

Capture of circulating tumor DNA through the use of biotinylated poly-lysine affixed to gold nanoparticles

Use of CT Texture Analysis for Characterization and Prognostication of Incidental Adnexal Lesions

miRNA analysis in mouse model of metastatic breast cancer. (Proj 2) The inhibition of PD-L1 on a Pan02 cell line w/ siRNA-nanodrug & gemcitabine treatment

Assessing the reproducibility of MRI-based brain tumor measurements between both observers and MRI vendors

The Nano-plasmonic Exosome (nPLEX) Assay for Pancreatic Ductal Adenocarcinoma Diagnosis and Prognosis

Using smart biomaterials with immunoadjuvants to treat metastatic breast cancer

T1-weighted imaging of primary pancreatic adenocarcinoma using magnetic ferumoxytol nanoparticles

Identifying genomic and compound dependencies in undifferentiated sarcomas

Nanoencapsulation of tyrosine kinase inhibitors and their effects on pathway inhibition

Discovering the Genetic Mechanism of Enhanced Metastatic Colonization in SMAD4 Mutant Tumors

Development of Smart INCeRT Brachytherapy Spacers via PLGA and Docetaxel for Combined Chemo-Radiation Therapies in Prostate Cancer

Impact of RPS15 mutation on development and progression of chronic lymphocytic leukemia

Synthesis of DFO-Lys(PEG30k)-Cys(Cy3) to examine macropinocytosis in human and mouse cancers in vitro

Optimization of macrophage-targeted nanoparticles for positron emission tomography imaging in cancer


Soleil Doggett (Biology, '16) talks to her fellow peers about her research on oxygenating tumors to stimulate the anti-tumor immune response.

 


Trainee e-portfolios

Photo credit: Tom Kates Photography

While on co-op, trainees document their research in an e-portfolio.  This gives trainees the opportunity to provide regular updates on their research progress, reflect on training they are receiving, and explain how their research fits within the field of cancer nanomedicine.  These research e-portfolios can be accessed through individual trainee profiles.  The complete collection may be found here.

 


Presentation at CaNCURE Nanomedicine Day

At the completion of their co-op, trainees are provided with the opportunity to present their research to a wider audience.  For our June CaNCURE Nanomedicine Day, trainees prepare interactive, digital posters to display on electronic poster boards.  Over 100 faculty, students, and researchers attend this annual event!

Check out the news article about our first CaNCURE Day!


Trainee Publications

Our Trainees have published 22 peer-reviewed since January 2015.  A full list of Trainee publications is found below.

  1. Patrick Sheedy, Zdravka Medarova. The fundamental role of miR-10b in metastatic cancer. Am J Cancer Res 2018;8(9):1674-1688. Link
  2. Chen X, Ling X, Zhao L, Xiong F, Hollett G, Kang Y, Barrett A, Wu J. “Biomimetic Shells Endow Sub-50 nm Nanoparticles with Ultrahigh Paclitaxel Payloads for Specific and Robust Chemotherapy.”  ACS Appl Mater Interfaces. 2018 Sep 25. doi: 10.1021/acsami.8b11571. PMID: 30203956  Link
  3. Hedgire S, Krebill C, Wojtkiewicz GR, Oliveira I, Ghoshhajra BB, Hoffmann U, Harisinghani MG. “Ultrasmall superparamagnetic iron oxide nanoparticle uptake as noninvasive marker of aortic wall inflammation on MRI: proof of concept study.”   Br J Radiol. 2018 Sep 12:20180461. doi: 10.1259/bjr.20180461. PMID: 30160173  Link
  4. Application of the BLADE Sequence in Upper Abdominal MR Imaging. Krebill C.  Radiol Technol. 2018 May;89(5):495-497. PMID:29793909 Link
  5. Torrado-Carvajal A, Vera-Olmos J, Izquierdo-Garcia D1, Catalano OA, Morales MA, Margolin J, Soricelli A, Salvatore M, Malpica N, Catana C1. Dixon-VIBE Deep Learning (DIVIDE) Pseudo-CT Synthesis for Pelvis PET/MR Attenuation Correction. J Nucl Med. 2018 Aug 30. pii: jnumed.118.209288. doi: 10.2967/jnumed.118.209288. PMID: 30166357  Link
  6. Xiaoyuan Ji, Jie Wang, Lin Mei, Wei Tao, Austin Barrett, Zhiguo Su, Shaomin Wang. Guanghui Ma, Jinjun Shi, Songping Zhang. Artificial Photosynthesis: Porphyrin/SiO2 /Cp*Rh(bpy)Cl Hybrid Nanoparticles Mimicking Chloroplast with Enhanced Electronic Energy Transfer for Biocatalyzed Artificial Photosynthesis. Advanced Functional Materials. Link
  7. Yang KS, Im H, Hong S, Pergolini I, Del Castillo AF, Wang R, Clardy S, Huang CH, Craig Pille, Ferrone, Yang R, Castro CM, Lee H, Del Castillo CF, Weissleder R. Multiparametric plasma EV profiling facilitates diagnosis of pancreatic malignancy. Sci Transl Med. 2017; 9(391): eaal3226. PMC5846089
  8. Zhu X, Ji X, Kong N, Chen Y, Mahmoudi M, Xu X, Ding L, Tao W, Cai T, Li Y, Gan T, Austin Barrett, Bharwani Z, Chen H, Farokhzad OC. Intracellular Mechanistic Understanding of 2D MoS2 Nanosheets for Anti-Exocytosis-Enhanced Synergistic Cancer Therapy.  ACS Nano. 2018 Mar 27;12(3):2922-2938. PMC6097229
  9. Miller MA1, Kim E, Cuccarese MF, Alec Plotkin, Prytyskach M, Kohler RH, Pittet MJ, Weissleder R. “Near infrared imaging of Mer tyrosine kinase (MERTK) using MERi-SiR reveals tumor associated macrophage uptake in metastatic disease.” Chem Commun. 2017 Dec 19;54(1):42-45. PMC5736449
  10. Ding L, Zhu X, Wang Y, Shi B, Ling X, Chen H, Nan W, Austin Barrett, Guo Z, Tao W, Wu J, Shi X. “Intracellular Fate of Nanoparticles with Polydopamine Surface Engineering and a Novel Strategy for Exocytosis-Inhibiting, Lysosome Impairment-Based Cancer Therapy”. Nano Lett. 2017 Nov 8;17(11):6790-6801.  PMC6071871
  11. Yoo B, Ann-Marie, Billig, Medarova Z. “Guidelines for Rational Cancer Therapeutics. Frontiers in Oncology Journal”. Front Oncol. 2017 Dec 12;7:310. PMC5732930
  12. Gharagouzloo C, Timms L, Qiao J, Fang Z, Joseph Nneji, Pandya A, Kulkarni P, van de Ven AL, Ferris C, Sridhar S. “Neural circuits and brain function: New insights using quantitative vascular mapping of the rat.” Neuroimage, 2017. 16C:24-33  PMC5824692
  13. Gharagouzloo C, Timms L, Qiao J, Fang Z, Joseph Nneji, Pandya A, Kulkarni P, van de Ven AL, Ferris C, Sridhar S.   “Dataset on a 173 region awake resting state quantitative cerebral blood volume rat brain atlas and regional changes to cerebral blood volume under isoflurane anesthetization and CO2 challenge”. Data in Brief, 2018. 17:393-396.  Link
  14. Qin L, Li A, Qu J, Reinshagen K, Li X, Cheng S, Annie Bryant, Young GS. Normalization of ADC does not improve correlation with overall survival in patients with high-grade glioma (HGG). J Neurooncol. 2018 Apr;137(2):313-319.   PMC6071871
  15. Belz J, Kumar R, Baldwin P, Noelle Castilla Ojo, Leal AS, Royce DB, Di Zhang D, van de Ven AL, Liby K, Sridhar S. “Sustained-release Talazoparib implants for localized treatment of BRCA1-deficient breast cancer”. Theranostics, 7(17): 4340-4349.  PMC5695017
  16. Qin L, Li X, Amanda Stroiney, Qu J, Helgager J, Reardon DA, Young GS. “Advanced MRI assessment to predict benefit of anti-programmed cell death 1 protein immunotherapy response in patients with recurrent glioblastoma.” 2017 Feb;59(2):135-145.  PMC6097616
  17. Jodi Belz, Noelle Castilla Ojo,Srinivas Sridhar, Rajiv Kumar.  Radiosensitizing silica nanoparticles encapsulating docetaxel for treatment of prostate cancer, In Cancer Nanotechnology. Reema Zeineldin (Ed).  Series: Methods in Molecular Biology. Springer Press. Methods Mol Biol. 2017; 1530:403-409. PMC5531609
  18. Christian Berrios, Megha Padi, Mark A. Keibler, Donglim Esther Park, Vadim Molla, Gregory Stephanopoulos, John Quackenbush, James A. DeCaprio. “Merkel cell polyomavirus small T antigen promotes pro-glycolytic metabolic perturbations required for transformation”. 2016 Nov 23;12(11):e1006020.   PMC5120958
  19. Song C, Liu Y, Rachel Fontana, Makrigiorgos A, Mamon H, Kulke MH, G. Mike Makrigiorgos. “Elimination of unaltered DNA in mixed clinical samples via nuclease-assisted minor-allele enrichment”.  2016 Nov 2;44(19):e146. PMC5100565
  20. Andrew L. Hong, Yuen-Yi Tseng, Glenn S. Cowley, Oliver Jonas, Jaime H. Cheah, Bryan D. Kynnap, Mihir B. Doshi, Coyin Oh, Stephanie C. Meyer, Alanna J. Church, Shubhroz Gill, Craig M. Bielski, Paula Keskula, Alma Imamovic, Sara Howell, Gregory V. Kryukov, Paul A. Clemons, Aviad Tsherniak, Francisca Vazquez, Brian D. Crompton, Alykhan F. Shamji, Carlos Rodriguez-Galindo, Katherine A. Janeway, Charles W. M. Roberts, Kimberly Stegmaier, Paul van Hummelen,
Michael J. Cima, Robert S. Langer, Levi A. Garraway, Stuart L. Schreiber, David E. Root,
William C. Hahn, & Jesse S. Boehm. “Integrated genetic and pharmacologic interrogation of rare cancers”. Nat Commun. 2016 Jun 22;7:11987.  PMC4917959
  21. Wang P, Yoo B, Sherman S, Mukherjee P, Ross A, Pantazopoulos P, Petkova V, Farrar C, Medarova Z, Moore A. “Predictive imaging of chemotherapeutic response in a transgenic mouse model of pancreatic cancer.” Int J Cancer. 2016 Aug 1;139(3):712-8. PMCID: PMC4925171
  22. Nazila Kamaly, Gabrielle Fredman, Jhalique J. Fojas, Manikandan Subramanian, Won II Choi, Katherine Zepeda, Cristian Vilos, Mikyung Yu, Suresh Gadde, Jun Wu, Jaclyn Milton, Renata Leitao, Livia Rosa, Moaraj Hasan, Huayi Gao, Vance Nguyen, Jordan Harris, Ira Tabas, and Omid C. Farokhzad. “Interleukin-10 Targeted Nanotherapeutics Developed with a Microfluidic Chip Enhance Resolution of Inflammation in Advanced Atherosclerosis”. ACS Nano. 2016 May 24;10(5):5280-92. PMC5199136