Research Highlight


Summary of the D3 Platform. (A) Assay process for cellular detection and immunolabeling (B) Schematic for D3 device (C) Rendering of the D3 smartphone model utilizing the embedded phone camera to record diffraction images. Images are sent via an encrypted cloud service to a server for real-time diffraction analysis and diagnostic information is sent back. Source: Im, Hyungsoon, Cesar M. Castro, Huilin Shao, Monty Liong, Jun Song, Divya Pathania, Lioubov Fexon, Changwook Min, Maria Avila-Wallace, Omar Zurkiya, Junsung Rho, Brady Magaoay, Rosemary H. Tambouret, Misha Pivovarov, Ralph Weissleder, and Hakho Lee. “Digital Diffraction Analysis Enables Low-cost Molecular Diagnostics on a Smartphone.” Proceedings of the National Academy of Sciences Proc Natl Acad Sci USA 112.18 (2015): 5613-5618. Web. 12 Feb. 2016.

Digital diffraction diagnostics for lymphoma and HPV

Much of the developing world currently has limited availability of pathology services resulting in numerous cases of undetected and untreated diseases that, if caught earlier on in their progression, would be much easier and less expensive to treat. A group of researchers at the Center for Systems Biology at Massachusetts General Hospital has developed a device called the D3 (digital diffraction diagnostic) system that can be used to diagnose various physiological conditions including lymphoma, cervical cancer, and HPV in point-of-care settings using a smartphone. This device, which attaches itself to the lens of a smartphone, consists of a battery-powered LED light, circuit board, sample insert, pinhole, and mounting clip and utilizes the smartphone camera to take an image of a manually-inserted blood or tissue sample. Before the image is taken, the sample is labeled using microbeads coated with ligands (e.g. antibodies or nucleotides) that bind to specific biomarkers indicative of cancer or HPV. In order to detect lymphoma, cells from a fine-needle aspirate (FNA) of a lymph node are captured by primary antibody CD20 coated on a glass coverslip, then microbeads coated with either kappa or lambda antibody are added to bind to the cells and interrogate their polarization. A similar process is carried out for diagnosing HPV. However, the viral DNA is targeted by microbeads rather than the cancer cells containing the CD20 antigen. Once the image is taken, it is uploaded via a secure, encrypted cloud network to a database at MGH where the image is analyzed using an algorithm that detects the presence of cancer or HPV by identifying the unique diffraction patterns of the bound beads as well as their proximity to the analyte of interest. Based on the number of microbeads bound to target cells, a patient can be quickly, inexpensively, and accurately diagnosed. The D3 device has detected the presence of tumor proteins in cancer cell lines as accurately as the gold standard of microscopy and flow cytometry and allows for an analysis of up to 100,000 cells at a time. The goal of this project is to refine and optimize the D3 assay in order to create an efficient diagnostic device capable of revolutionizing pathology services related to cancer and other diseases in developing countries.

 

 


Trainee Research

CaNCURE provides trainees with a 6-month hands-on research experience and one-on-one mentoring by leading researchers in cancer nanomedicine.   Projects performed by current and past participants include:

Quantification of SPION accumulation in tumors using positive-contrast MRI

Combined delivery of targeted liposomal chemotherapeutics and photodynamic therapy to treat pancreatic cancer

Biological mechanisms of gold nanoparticle-enhanced radiation therapy of prostate cancer

Characterization of Targeted PARP-inhibitor Nanoformulations In Vitro and In Vivo

Radiation enhancement in cancer cells using gold and gadolinium nanoparticles

miRNA analysis in mouse model of metastatic breast cancer. (Proj 2) The inhibition of PD-L1 on a Pan02 cell line w/ siRNA-nanodrug & gemcitabine treatment

Codelivery of tumor suppressor mRNA and anti-cancer drug in cancer treatment

Assessment of atherosclerotic changes following neoadjuvant therapy using ferumoxytol as contrast imaging agent

Integrated diffraction-based diagnostic for point-of-care screening

Assessing the reproducibility of MRI-based brain tumor measurements between both observers and MRI vendors

Implementation of novel MR-based attenuation correction in PET/MR pelvic scans

Inhibiting DNA repair after nanoparticle-amplified radiation therapy

T1-weighted imaging of primary pancreatic adenocarcinoma using magnetic ferumoxytol nanoparticles

Erythropoietin improves antitumor immune response through reversal of the hypoxic tumor microenvironment

Discovering the Genetic Mechanism of Enhanced Metastatic Colonization in SMAD4 Mutant Tumors

Small T Antigen Effect on Mitotic Proteins B-Myb and FOXM1

Targeted Delivery of Liposomes using PARP Inhibitors to Treat Non-Small Cell Lung Cancer

Analyzing metastasis through targeted miRNA nanotherapy in aggressive breast cancer

Digital diffraction diagnostics for lymphoma and HPV

The Development and Characterization of Monoclonal Antibodies for Integrins and TGF-b

Delivery of Titanium Dioxide Nanoparticles via Biodegradable PLGA Dissolving Microneedles for Sustainable Release

Optimizing murine cells for in vitro modeling of high-grade serous ovarian cancer

Localized chemo- and chemo-radiation for the treatment of prostate cancer

Quantitative Multimodal Imaging of Tumor Response to Radiation

Targeting WASp using Wiskostatin-gold nanoparticles


Soleil Doggett (Biology, '16) talks to her fellow peers about her research on oxygenating tumors to stimulate the anti-tumor immune response.

 


Trainee e-portfolios

Photo credit: Tom Kates Photography

While on co-op, trainees document their research in an e-portfolio.  This gives trainees the opportunity to provide regular updates on their research progress, reflect on training they are receiving, and explain how their research fits within the field of cancer nanomedicine.  These research e-portfolios can be accessed through individual trainee profiles.  The complete collection may be found here.

 


Presentation at CaNCURE Nanomedicine Day

At the completion of their co-op, trainees are provided with the opportunity to present their research to a wider audience.  For our June CaNCURE Nanomedicine Day, trainees prepare interactive, digital posters to display on electronic poster boards.  Over 100 faculty, students, and researchers attend this annual event!

Check out the news article about our first CaNCURE Day!


Trainee Publications

Our Trainees have published 22 peer-reviewed since January 2015.  A full list of Trainee publications is found below.

  1. Patrick Sheedy, Zdravka Medarova. The fundamental role of miR-10b in metastatic cancer. Am J Cancer Res 2018;8(9):1674-1688. Link
  2. Chen X, Ling X, Zhao L, Xiong F, Hollett G, Kang Y, Barrett A, Wu J. “Biomimetic Shells Endow Sub-50 nm Nanoparticles with Ultrahigh Paclitaxel Payloads for Specific and Robust Chemotherapy.”  ACS Appl Mater Interfaces. 2018 Sep 25. doi: 10.1021/acsami.8b11571. PMID: 30203956  Link
  3. Hedgire S, Krebill C, Wojtkiewicz GR, Oliveira I, Ghoshhajra BB, Hoffmann U, Harisinghani MG. “Ultrasmall superparamagnetic iron oxide nanoparticle uptake as noninvasive marker of aortic wall inflammation on MRI: proof of concept study.”   Br J Radiol. 2018 Sep 12:20180461. doi: 10.1259/bjr.20180461. PMID: 30160173  Link
  4. Application of the BLADE Sequence in Upper Abdominal MR Imaging. Krebill C.  Radiol Technol. 2018 May;89(5):495-497. PMID:29793909 Link
  5. Torrado-Carvajal A, Vera-Olmos J, Izquierdo-Garcia D1, Catalano OA, Morales MA, Margolin J, Soricelli A, Salvatore M, Malpica N, Catana C1. Dixon-VIBE Deep Learning (DIVIDE) Pseudo-CT Synthesis for Pelvis PET/MR Attenuation Correction. J Nucl Med. 2018 Aug 30. pii: jnumed.118.209288. doi: 10.2967/jnumed.118.209288. PMID: 30166357  Link
  6. Xiaoyuan Ji, Jie Wang, Lin Mei, Wei Tao, Austin Barrett, Zhiguo Su, Shaomin Wang. Guanghui Ma, Jinjun Shi, Songping Zhang. Artificial Photosynthesis: Porphyrin/SiO2 /Cp*Rh(bpy)Cl Hybrid Nanoparticles Mimicking Chloroplast with Enhanced Electronic Energy Transfer for Biocatalyzed Artificial Photosynthesis. Advanced Functional Materials. Link
  7. Yang KS, Im H, Hong S, Pergolini I, Del Castillo AF, Wang R, Clardy S, Huang CH, Craig Pille, Ferrone, Yang R, Castro CM, Lee H, Del Castillo CF, Weissleder R. Multiparametric plasma EV profiling facilitates diagnosis of pancreatic malignancy. Sci Transl Med. 2017; 9(391): eaal3226. PMC5846089
  8. Zhu X, Ji X, Kong N, Chen Y, Mahmoudi M, Xu X, Ding L, Tao W, Cai T, Li Y, Gan T, Austin Barrett, Bharwani Z, Chen H, Farokhzad OC. Intracellular Mechanistic Understanding of 2D MoS2 Nanosheets for Anti-Exocytosis-Enhanced Synergistic Cancer Therapy.  ACS Nano. 2018 Mar 27;12(3):2922-2938. PMC6097229
  9. Miller MA1, Kim E, Cuccarese MF, Alec Plotkin, Prytyskach M, Kohler RH, Pittet MJ, Weissleder R. “Near infrared imaging of Mer tyrosine kinase (MERTK) using MERi-SiR reveals tumor associated macrophage uptake in metastatic disease.” Chem Commun. 2017 Dec 19;54(1):42-45. PMC5736449
  10. Ding L, Zhu X, Wang Y, Shi B, Ling X, Chen H, Nan W, Austin Barrett, Guo Z, Tao W, Wu J, Shi X. “Intracellular Fate of Nanoparticles with Polydopamine Surface Engineering and a Novel Strategy for Exocytosis-Inhibiting, Lysosome Impairment-Based Cancer Therapy”. Nano Lett. 2017 Nov 8;17(11):6790-6801.  PMC6071871
  11. Yoo B, Ann-Marie, Billig, Medarova Z. “Guidelines for Rational Cancer Therapeutics. Frontiers in Oncology Journal”. Front Oncol. 2017 Dec 12;7:310. PMC5732930
  12. Gharagouzloo C, Timms L, Qiao J, Fang Z, Joseph Nneji, Pandya A, Kulkarni P, van de Ven AL, Ferris C, Sridhar S. “Neural circuits and brain function: New insights using quantitative vascular mapping of the rat.” Neuroimage, 2017. 16C:24-33  PMC5824692
  13. Gharagouzloo C, Timms L, Qiao J, Fang Z, Joseph Nneji, Pandya A, Kulkarni P, van de Ven AL, Ferris C, Sridhar S.   “Dataset on a 173 region awake resting state quantitative cerebral blood volume rat brain atlas and regional changes to cerebral blood volume under isoflurane anesthetization and CO2 challenge”. Data in Brief, 2018. 17:393-396.  Link
  14. Qin L, Li A, Qu J, Reinshagen K, Li X, Cheng S, Annie Bryant, Young GS. Normalization of ADC does not improve correlation with overall survival in patients with high-grade glioma (HGG). J Neurooncol. 2018 Apr;137(2):313-319.   PMC6071871
  15. Belz J, Kumar R, Baldwin P, Noelle Castilla Ojo, Leal AS, Royce DB, Di Zhang D, van de Ven AL, Liby K, Sridhar S. “Sustained-release Talazoparib implants for localized treatment of BRCA1-deficient breast cancer”. Theranostics, 7(17): 4340-4349.  PMC5695017
  16. Qin L, Li X, Amanda Stroiney, Qu J, Helgager J, Reardon DA, Young GS. “Advanced MRI assessment to predict benefit of anti-programmed cell death 1 protein immunotherapy response in patients with recurrent glioblastoma.” 2017 Feb;59(2):135-145.  PMC6097616
  17. Jodi Belz, Noelle Castilla Ojo,Srinivas Sridhar, Rajiv Kumar.  Radiosensitizing silica nanoparticles encapsulating docetaxel for treatment of prostate cancer, In Cancer Nanotechnology. Reema Zeineldin (Ed).  Series: Methods in Molecular Biology. Springer Press. Methods Mol Biol. 2017; 1530:403-409. PMC5531609
  18. Christian Berrios, Megha Padi, Mark A. Keibler, Donglim Esther Park, Vadim Molla, Gregory Stephanopoulos, John Quackenbush, James A. DeCaprio. “Merkel cell polyomavirus small T antigen promotes pro-glycolytic metabolic perturbations required for transformation”. 2016 Nov 23;12(11):e1006020.   PMC5120958
  19. Song C, Liu Y, Rachel Fontana, Makrigiorgos A, Mamon H, Kulke MH, G. Mike Makrigiorgos. “Elimination of unaltered DNA in mixed clinical samples via nuclease-assisted minor-allele enrichment”.  2016 Nov 2;44(19):e146. PMC5100565
  20. Andrew L. Hong, Yuen-Yi Tseng, Glenn S. Cowley, Oliver Jonas, Jaime H. Cheah, Bryan D. Kynnap, Mihir B. Doshi, Coyin Oh, Stephanie C. Meyer, Alanna J. Church, Shubhroz Gill, Craig M. Bielski, Paula Keskula, Alma Imamovic, Sara Howell, Gregory V. Kryukov, Paul A. Clemons, Aviad Tsherniak, Francisca Vazquez, Brian D. Crompton, Alykhan F. Shamji, Carlos Rodriguez-Galindo, Katherine A. Janeway, Charles W. M. Roberts, Kimberly Stegmaier, Paul van Hummelen,
Michael J. Cima, Robert S. Langer, Levi A. Garraway, Stuart L. Schreiber, David E. Root,
William C. Hahn, & Jesse S. Boehm. “Integrated genetic and pharmacologic interrogation of rare cancers”. Nat Commun. 2016 Jun 22;7:11987.  PMC4917959
  21. Wang P, Yoo B, Sherman S, Mukherjee P, Ross A, Pantazopoulos P, Petkova V, Farrar C, Medarova Z, Moore A. “Predictive imaging of chemotherapeutic response in a transgenic mouse model of pancreatic cancer.” Int J Cancer. 2016 Aug 1;139(3):712-8. PMCID: PMC4925171
  22. Nazila Kamaly, Gabrielle Fredman, Jhalique J. Fojas, Manikandan Subramanian, Won II Choi, Katherine Zepeda, Cristian Vilos, Mikyung Yu, Suresh Gadde, Jun Wu, Jaclyn Milton, Renata Leitao, Livia Rosa, Moaraj Hasan, Huayi Gao, Vance Nguyen, Jordan Harris, Ira Tabas, and Omid C. Farokhzad. “Interleukin-10 Targeted Nanotherapeutics Developed with a Microfluidic Chip Enhance Resolution of Inflammation in Advanced Atherosclerosis”. ACS Nano. 2016 May 24;10(5):5280-92. PMC5199136