Research Highlight


Mouse models of RPS15 mutation with and without other known CLL-inducing aberrations.

Impact of RPS15 mutation on development and progression of chronic lymphocytic leukemia

It is increasingly understood that ribosomes play a dynamic and highly regulated role in the cell. Their numerous functions in modulating the cell cycle, migration, metabolism and cell growth, as well as the heterogeneity and plasticity reported in ribosomal composition and function, make them a growing area of interest to the cancer research community. Recent studies have introduced the possibility of there being an“oncogenic ribosome” driving cancer development and progression, namely because of the many ribosomal proteins that have been frequently found to be mutated across different cancer types. In chronic lymphocytic leukemia (CLL), for example, a specific mutation of the RPS15 gene, located in the 40S ribosomal subunit, has been found to be identified in ~5% of all CLL patients, and in ~20% of patients who have relapsed after fludarabine, cyclophosphamide and rituximab (FCR) therapy. The Wu lab has developed a novel, conditional knock-in mouse model to study the effects of mutated RPS15 on B cell biology (such as its impact on ribosomal function and translation of mRNA) and on CLL development and progression. We will assess the effects of this mutation in -vivo by longitudinally studying mice with B cell-restricted expression of mutated RPS15 alone or in combination with other common CLL-associated genetic aberrations, so as to determine whether this mutation alone can drive the development of CLL, or whether it affects the latency and penetrance of CLL when combined with other mutations. To monitor the state of disease of these mice we will use flow cytometric detection of the CLL surface markers, B220+ and CD5+, as well as measure the clonality of any CLL that arises (by measuring IgK+ expression). Characterizing the impact of RPS15 mutation on tumor development, progression and drug resistance will have broad implications applicable across cancers, and will further provide insight on the role of RPs and their mutations in cancer, relapse, and chemotherapeutic resistance. Additionally, this work may identify novel therapeutic targets that may be leveraged in the clinic.

 

 


Trainee Research

CaNCURE provides trainees with a 6-month hands-on research experience and one-on-one mentoring by leading researchers in cancer nanomedicine.   Projects performed by current and past participants include:

Implementation of novel MR-based attenuation correction in PET/MR pelvic scans

Software with built-in neuroanatomy atlas provides insight into cancer treatment

Identification of novel therapeutic targets of the Notch1 signaling pathway

Using smart biomaterials with immunoadjuvants to treat metastatic breast cancer

Injectable thermogelling cisplatin-loaded hydrogels for combined chemo-radiation therapy in cervical cancer

The Development and Characterization of Monoclonal Antibodies for Integrins and TGF-b

Triple-targeted Photonanomedicine: A Strategy to Treat Heterogeneous Tumors

Nano-plasmonic exosome (nPLEX) assays for exosome analysis and antibody validation

Longitudinal assessment of tumor heterogeneity during immunotherapy for metastatic melanoma

Granzyme B Peptide as a Non-invasive Theranostic Agent

Targeting CXCR4/SDF-1a using phytochemicals to inhibit progression and metastasis of pancreatic cancer

Investigation of a miRNA associated with cancer metastasis. Proj 2-Development of a novel nanoparticle for MPI analysis of thromboses

Mechanistic and modeling studies of lipid nanoemulsions impact on oral lapatinib absorption

Combined delivery of targeted liposomal chemotherapeutics and photodynamic therapy to treat pancreatic cancer

The Nano-plasmonic Exosome (nPLEX) Assay for Pancreatic Ductal Adenocarcinoma Diagnosis and Prognosis

Characterization of Nano-Dinaciclib in Combination with Nano-Talazoparib for the Treatment of Breast Cancer

In vivo investigation of the pathogenesis and development of pituitary adenomas in relation to the loss of MEG3 expression

Nanoencapsulation of tyrosine kinase inhibitors and their effects on pathway inhibition

Co-delivery of protective substrate and chemotherapy drugs via lipid Bilayer Mesoporous Silica Nanoparticles

T1-weighted imaging of primary pancreatic adenocarcinoma using magnetic ferumoxytol nanoparticles

Localized chemo- and chemo-radiation for the treatment of prostate cancer

Understanding the Role of Epigenetics in Multiple Myeloma Progression

Inhibiting DNA repair after nanoparticle-amplified radiation therapy

Radiotherapeutic synergism of thermogelling cisplatin-loaded polymers for cervical cancer treatment

Combined Cisplatin and Olaparib nanoparticles for ovarian cancer therapy


Soleil Doggett (Biology, '16) talks to her fellow peers about her research on oxygenating tumors to stimulate the anti-tumor immune response.

 


Trainee e-portfolios

Photo credit: Tom Kates Photography

While on co-op, trainees document their research in an e-portfolio.  This gives trainees the opportunity to provide regular updates on their research progress, reflect on training they are receiving, and explain how their research fits within the field of cancer nanomedicine.  These research e-portfolios can be accessed through individual trainee profiles.  The complete collection may be found here.

 


Presentation at CaNCURE Nanomedicine Day

At the completion of their co-op, trainees are provided with the opportunity to present their research to a wider audience.  For our June CaNCURE Nanomedicine Day, trainees prepare interactive, digital posters to display on electronic poster boards.  Over 100 faculty, students, and researchers attend this annual event!

Check out the news article about our first CaNCURE Day!


Trainee Publications

Our Trainees have published 22 peer-reviewed since January 2015.  A full list of Trainee publications is found below.

  1. Patrick Sheedy, Zdravka Medarova. The fundamental role of miR-10b in metastatic cancer. Am J Cancer Res 2018;8(9):1674-1688. Link
  2. Chen X, Ling X, Zhao L, Xiong F, Hollett G, Kang Y, Barrett A, Wu J. “Biomimetic Shells Endow Sub-50 nm Nanoparticles with Ultrahigh Paclitaxel Payloads for Specific and Robust Chemotherapy.”  ACS Appl Mater Interfaces. 2018 Sep 25. doi: 10.1021/acsami.8b11571. PMID: 30203956  Link
  3. Hedgire S, Krebill C, Wojtkiewicz GR, Oliveira I, Ghoshhajra BB, Hoffmann U, Harisinghani MG. “Ultrasmall superparamagnetic iron oxide nanoparticle uptake as noninvasive marker of aortic wall inflammation on MRI: proof of concept study.”   Br J Radiol. 2018 Sep 12:20180461. doi: 10.1259/bjr.20180461. PMID: 30160173  Link
  4. Application of the BLADE Sequence in Upper Abdominal MR Imaging. Krebill C.  Radiol Technol. 2018 May;89(5):495-497. PMID:29793909 Link
  5. Torrado-Carvajal A, Vera-Olmos J, Izquierdo-Garcia D1, Catalano OA, Morales MA, Margolin J, Soricelli A, Salvatore M, Malpica N, Catana C1. Dixon-VIBE Deep Learning (DIVIDE) Pseudo-CT Synthesis for Pelvis PET/MR Attenuation Correction. J Nucl Med. 2018 Aug 30. pii: jnumed.118.209288. doi: 10.2967/jnumed.118.209288. PMID: 30166357  Link
  6. Xiaoyuan Ji, Jie Wang, Lin Mei, Wei Tao, Austin Barrett, Zhiguo Su, Shaomin Wang. Guanghui Ma, Jinjun Shi, Songping Zhang. Artificial Photosynthesis: Porphyrin/SiO2 /Cp*Rh(bpy)Cl Hybrid Nanoparticles Mimicking Chloroplast with Enhanced Electronic Energy Transfer for Biocatalyzed Artificial Photosynthesis. Advanced Functional Materials. Link
  7. Yang KS, Im H, Hong S, Pergolini I, Del Castillo AF, Wang R, Clardy S, Huang CH, Craig Pille, Ferrone, Yang R, Castro CM, Lee H, Del Castillo CF, Weissleder R. Multiparametric plasma EV profiling facilitates diagnosis of pancreatic malignancy. Sci Transl Med. 2017; 9(391): eaal3226. PMC5846089
  8. Zhu X, Ji X, Kong N, Chen Y, Mahmoudi M, Xu X, Ding L, Tao W, Cai T, Li Y, Gan T, Austin Barrett, Bharwani Z, Chen H, Farokhzad OC. Intracellular Mechanistic Understanding of 2D MoS2 Nanosheets for Anti-Exocytosis-Enhanced Synergistic Cancer Therapy.  ACS Nano. 2018 Mar 27;12(3):2922-2938. PMC6097229
  9. Miller MA1, Kim E, Cuccarese MF, Alec Plotkin, Prytyskach M, Kohler RH, Pittet MJ, Weissleder R. “Near infrared imaging of Mer tyrosine kinase (MERTK) using MERi-SiR reveals tumor associated macrophage uptake in metastatic disease.” Chem Commun. 2017 Dec 19;54(1):42-45. PMC5736449
  10. Ding L, Zhu X, Wang Y, Shi B, Ling X, Chen H, Nan W, Austin Barrett, Guo Z, Tao W, Wu J, Shi X. “Intracellular Fate of Nanoparticles with Polydopamine Surface Engineering and a Novel Strategy for Exocytosis-Inhibiting, Lysosome Impairment-Based Cancer Therapy”. Nano Lett. 2017 Nov 8;17(11):6790-6801.  PMC6071871
  11. Yoo B, Ann-Marie, Billig, Medarova Z. “Guidelines for Rational Cancer Therapeutics. Frontiers in Oncology Journal”. Front Oncol. 2017 Dec 12;7:310. PMC5732930
  12. Gharagouzloo C, Timms L, Qiao J, Fang Z, Joseph Nneji, Pandya A, Kulkarni P, van de Ven AL, Ferris C, Sridhar S. “Neural circuits and brain function: New insights using quantitative vascular mapping of the rat.” Neuroimage, 2017. 16C:24-33  PMC5824692
  13. Gharagouzloo C, Timms L, Qiao J, Fang Z, Joseph Nneji, Pandya A, Kulkarni P, van de Ven AL, Ferris C, Sridhar S.   “Dataset on a 173 region awake resting state quantitative cerebral blood volume rat brain atlas and regional changes to cerebral blood volume under isoflurane anesthetization and CO2 challenge”. Data in Brief, 2018. 17:393-396.  Link
  14. Qin L, Li A, Qu J, Reinshagen K, Li X, Cheng S, Annie Bryant, Young GS. Normalization of ADC does not improve correlation with overall survival in patients with high-grade glioma (HGG). J Neurooncol. 2018 Apr;137(2):313-319.   PMC6071871
  15. Belz J, Kumar R, Baldwin P, Noelle Castilla Ojo, Leal AS, Royce DB, Di Zhang D, van de Ven AL, Liby K, Sridhar S. “Sustained-release Talazoparib implants for localized treatment of BRCA1-deficient breast cancer”. Theranostics, 7(17): 4340-4349.  PMC5695017
  16. Qin L, Li X, Amanda Stroiney, Qu J, Helgager J, Reardon DA, Young GS. “Advanced MRI assessment to predict benefit of anti-programmed cell death 1 protein immunotherapy response in patients with recurrent glioblastoma.” 2017 Feb;59(2):135-145.  PMC6097616
  17. Jodi Belz, Noelle Castilla Ojo,Srinivas Sridhar, Rajiv Kumar.  Radiosensitizing silica nanoparticles encapsulating docetaxel for treatment of prostate cancer, In Cancer Nanotechnology. Reema Zeineldin (Ed).  Series: Methods in Molecular Biology. Springer Press. Methods Mol Biol. 2017; 1530:403-409. PMC5531609
  18. Christian Berrios, Megha Padi, Mark A. Keibler, Donglim Esther Park, Vadim Molla, Gregory Stephanopoulos, John Quackenbush, James A. DeCaprio. “Merkel cell polyomavirus small T antigen promotes pro-glycolytic metabolic perturbations required for transformation”. 2016 Nov 23;12(11):e1006020.   PMC5120958
  19. Song C, Liu Y, Rachel Fontana, Makrigiorgos A, Mamon H, Kulke MH, G. Mike Makrigiorgos. “Elimination of unaltered DNA in mixed clinical samples via nuclease-assisted minor-allele enrichment”.  2016 Nov 2;44(19):e146. PMC5100565
  20. Andrew L. Hong, Yuen-Yi Tseng, Glenn S. Cowley, Oliver Jonas, Jaime H. Cheah, Bryan D. Kynnap, Mihir B. Doshi, Coyin Oh, Stephanie C. Meyer, Alanna J. Church, Shubhroz Gill, Craig M. Bielski, Paula Keskula, Alma Imamovic, Sara Howell, Gregory V. Kryukov, Paul A. Clemons, Aviad Tsherniak, Francisca Vazquez, Brian D. Crompton, Alykhan F. Shamji, Carlos Rodriguez-Galindo, Katherine A. Janeway, Charles W. M. Roberts, Kimberly Stegmaier, Paul van Hummelen,
Michael J. Cima, Robert S. Langer, Levi A. Garraway, Stuart L. Schreiber, David E. Root,
William C. Hahn, & Jesse S. Boehm. “Integrated genetic and pharmacologic interrogation of rare cancers”. Nat Commun. 2016 Jun 22;7:11987.  PMC4917959
  21. Wang P, Yoo B, Sherman S, Mukherjee P, Ross A, Pantazopoulos P, Petkova V, Farrar C, Medarova Z, Moore A. “Predictive imaging of chemotherapeutic response in a transgenic mouse model of pancreatic cancer.” Int J Cancer. 2016 Aug 1;139(3):712-8. PMCID: PMC4925171
  22. Nazila Kamaly, Gabrielle Fredman, Jhalique J. Fojas, Manikandan Subramanian, Won II Choi, Katherine Zepeda, Cristian Vilos, Mikyung Yu, Suresh Gadde, Jun Wu, Jaclyn Milton, Renata Leitao, Livia Rosa, Moaraj Hasan, Huayi Gao, Vance Nguyen, Jordan Harris, Ira Tabas, and Omid C. Farokhzad. “Interleukin-10 Targeted Nanotherapeutics Developed with a Microfluidic Chip Enhance Resolution of Inflammation in Advanced Atherosclerosis”. ACS Nano. 2016 May 24;10(5):5280-92. PMC5199136